Driver Fatigue Detection System Using Electroencephalography Signals Based on Combined Entropy Features
نویسندگان
چکیده
Driver fatigue has become one of the major causes of traffic accidents, and is a complicated physiological process. However, there is no effective method to detect driving fatigue. Electroencephalography (EEG) signals are complex, unstable, and non-linear; non-linear analysis methods, such as entropy, maybe more appropriate. This study evaluates a combined entropy-based processing method of EEG data to detect driver fatigue. In this paper, 12 subjects were selected to take part in an experiment, obeying driving training in a virtual environment under the instruction of the operator. Four types of enthrones (spectrum entropy, approximate entropy, sample entropy and fuzzy entropy) were used to extract features for the purpose of driver fatigue detection. Electrode selection process and a support vector machine (SVM) classification algorithm were also proposed. The average recognition accuracy was 98.75%. Retrospective analysis of the EEG showed that the extracted features from electrodes T5, TP7, TP8 and FP1 may yield better performance. SVM classification algorithm using radial basis function as kernel function obtained better results. A combined entropy-based method demonstrates good classification performance for studying driver fatigue detection.
منابع مشابه
Automated Detection of Driver Fatigue Based on AdaBoost Classifier with EEG Signals
Purpose: Driving fatigue has become one of the important causes of road accidents, there are many researches to analyze driver fatigue. EEG is becoming increasingly useful in the measuring fatigue state. Manual interpretation of EEG signals is impossible, so an effective method for automatic detection of EEG signals is crucial needed. Method: In order to evaluate the complex, unstable, and non-...
متن کاملReal-Time EEG-Based Detection of Fatigue Driving Danger for Accident Prediction
This paper proposes a real-time electroencephalogram (EEG)-based detection method of the potential danger during fatigue driving. To determine driver fatigue in real time, wavelet entropy with a sliding window and pulse coupled neural network (PCNN) were used to process the EEG signals in the visual area (the main information input route). To detect the fatigue danger, the neural mechanism of d...
متن کاملNoise Robustness Analysis of Performance for EEG-Based Driver Fatigue Detection Using Different Entropy Feature Sets
Driver fatigue is an important factor in traffic accidents, and the development of a detection system for driver fatigue is of great significance. To estimate and prevent driver fatigue, various classifiers based on electroencephalogram (EEG) signals have been developed; however, as EEG signals have inherent non-stationary characteristics, their detection performance is often deteriorated by ba...
متن کاملDriver fatigue detection through multiple entropy fusion analysis in an EEG-based system
Driver fatigue is an important contributor to road accidents, and fatigue detection has major implications for transportation safety. The aim of this research is to analyze the multiple entropy fusion method and evaluate several channel regions to effectively detect a driver's fatigue state based on electroencephalogram (EEG) records. First, we fused multiple entropies, i.e., spectral entropy, ...
متن کاملDeveloping and evaluating a mobile driver fatigue detection network based on electroencephalograph signals
The rapid development of driver fatigue detection technology indicates important significance of traffic safety. The authors' main goals of this Letter are principally three: (i) A middleware architecture, defined as process unit (PU), which can communicate with personal electroencephalography (EEG) node (PEN) and cloud server (CS). The PU receives EEG signals from PEN, recognises the fatigue s...
متن کامل